Go to any major research university, and you’ll find the most advanced science relies on an art older than alchemy: glassblowing.
In this piece, we meet a third-generation scientific glassblower and go behind the scenes with some of her chief clients to see how this ancient art helps make cutting-edge research possible.
Grade schools teach that there are three or four states of matter—solid, liquid, gas and possibly plasma. Nature is much fuzzier than that, however. Depending who you ask, there may be more than a dozen states of matter, along with numerous substates such as glass.
Yes, glass. Scientifically speaking, glass is a highly viscous, noncrystalline substate of matter. It is like a liquid that cools without becoming crystalline. Our everyday silica glass is but one example; many substances, including metals, become glassy under the right conditions.
Physical chemists have struggled for decades to crack the true nature of glass and understand what happens at the transition to and from the glassy state. In 1995, Nobel laureate Philip Anderson called it the “deepest and most interesting unsolved problem in solid state theory.” Now, C. Austen Angell, a chemistry professor at Arizona State University believes he has translated the Rosetta Stone of glassy substances: water.